mojo3

Electrocoagulation (EC), is a rapidly growing area of wastewater treatment, less well known as radio frequency diathermy or short wave electrolysis, is a technique used for wash water treatment, wastewater treatment, industrial processed water, and medical treatment. Electricity-based electrocoagulation technology removes contaminants that are generally more difficult to remove by filtration or chemical treatment systems, such as emulsified oil, total petroleum hydrocarbons, refractory organics, suspended solids, and heavy metals. There are many brands of electrocoagulation devices available and they can range in complexity from a simple anode and cathode to much more complex devices with control over electrode potentials, passivation, anode consumption, cell REDOX potentials as well as the introduction of ultrasonic sound, ultraviolet light and a range of gases and reactants to achieve so-called Advanced Oxidation Processes for refractory or recalcitrant organic substances.

Background

Electrocoagulation (“electro”, meaning to apply an electrical charge to water, and “coagulation”, meaning the process of changing the particle surface charge, allowing suspended matter to form an agglomeration) is an advanced and economical water treatment technology. It effectively removes suspended solids to sub-micrometre levels, breaks emulsions such as oil and grease or latex, and oxidizes and eradicates heavy metals from water without the use of filters or the addition of separation chemicals

A wide range of wastewater treatment techniques are known, which includes biological processes for nitrification, denitrification and phosphorus removal, as well as a range of physico-chemical processes that require chemical addition. The commonly used physico-chemical treatment processes are filtrationair strippingion exchangechemical precipitation, chemical oxidation, carbon adsorptionultrafiltration (UF), reverse osmosis (RO), electrodialysisvolatilization, and gas stripping.

Benefits

  • Mechanical Filtration addresses only two issues in wash rack wash water: suspended solids larger than 30 µm, and free oil and grease. Emulsified oil and grease cause damage to the media filters, resulting in very high maintenance costs. Electrocoagulation addresses any size of suspended solids (including destructive >30 µm particles and heavy metals that can wear-and-tear pressure washers and pose an environmental and employee hazard).
  • Chemical treatment addresses suspended solids, oil and grease, and some heavy metals—but may require up to three polymer and multiple pH adjustments for proper treatment. This technology requires the addition of chemicals resulting in expensive, messy, and labor-intensive treatment. This process also requires addition of compressed air for floatation of coagulated contaminants. Generally filtration is also required as a post-treatment phase for polishing. Electrocoagulation requires no filters, no daily maintenance, no additives, and removes any size of suspended solids, oil, grease and heavy metals.

Technology

Treatment of wastewater and wash water by EC has been practiced for most of the 20th century with increasing popularity. In the last decade, this technology has been increasingly used in the United States, South America and Europe for treatment of industrial wastewater containing metals. It has also been noted that in North America EC has been used primarily to treat wastewater from pulp and paper industries, mining and metal-processing industries. A large one-thousand gallon per minute cooling tower application in El Paso, Texas illustrates electrocoagulations growing recognition and acceptance to the industrial community. In addition, EC has been applied to treat water containing foodstuff waste, oil wastes, dyes, marinas, public transit, wash water, ink, suspended particles, chemical and mechanical polishing waste, organic matter from landfill leachatesdefluorination of water, synthetic detergent effluents, and solutions containing heavy metals.

Coagulation process

Coagulation is one of the most important physio-chemical reactions used in water treatment. The precipitation of ions (heavy metals) and colloids (organic and inorganic) are mostly held in solution by electrical charges. By the addition of ions with opposite charges, these colloids can be destabilized; coagulation can be achieved by chemical or electrical methods. The coagulant is added in the form of suitable chemical substances. Alum [Al2(SO4)3.18H2O] is such a chemical substance, which has been widely used for ages for wastewater treatment.

The mechanism of coagulation has been the subject of continual review. It is generally accepted that coagulation is brought about primarily by the reduction of the net surface charge to a point where the colloidal particles, previously stabilized by electrostatic repulsion, can approach closely enough for van der Waals forces to hold them together and allow aggregation. The reduction of the surface charge is a consequence of the decrease of the repulsive potential of the electrical double layer by the presence of an electrolyte having opposite charge. In the EC process, the coagulant is generated in situ by electrolytic oxidation of an appropriate anode material. In this process, charged ionic species—metals or otherwise—are removed from wastewater by allowing it to react with an ion having an opposite charge, or with floc of metallic hydroxides generated within the effluent.

Electrocoagulation offers an alternative to the use of metal salts or polymers and polyelectrolyte addition for breaking stable emulsions and suspensions. The technology removes metals, colloidal solids and particles, and soluble inorganic pollutants from aqueous media by introducing highly charged polymeric metal hydroxide species. These species neutralize the electrostatic charges on suspended solids and oil droplets to facilitate agglomeration or coagulation and resultant separation from the aqueous phase. The treatment prompts the precipitation of certain metals and salts.

“Chemical coagulation has been used for decades to destabilize suspensions and to effect precipitation of soluble metals species, as well as other inorganic species from aqueous streams, thereby permitting their removal through sedimentation or filtration. Alum, lime and/or polymers have been the chemical coagulants used. These processes, however, tend to generate large volumes of sludge with high bound water content that can be slow to filter and difficult to dewater. These treatment processes also tend to increase the total dissolved solids (TDS) content of the effluent, making it unacceptable for reuse within industrial applications.”

“Although the electrocoagulation mechanism resembles chemical coagulation in that the cationic species are responsible for the neutralization of surface charges, the characteristics of the electrocoagulated flock differ dramatically from those generated by chemical coagulation. An electrocogulated flock tends to contain less bound water, is more shear resistant and is more readily filterable”

Description

In its simplest form, an electrocoagulation reactor is made up of an electrolytic cell with one anode and one cathode. When connected to an external power source, the anode material will electrochemically corrode due to oxidation, while the cathode will be subjected to passivation.

An EC system essentially consists of pairs of conductive metal plates in parallel, which act as monopolar electrodes. It furthermore requires a direct current power source, a resistance box to regulate the current density and a multimeter to read the current values. The conductive metal plates are commonly known as “sacrificial electrodes.” The sacrificial anode lowers the dissolution potential of the anode and minimizes the passivation of the cathode. The sacrificial anodes and cathodes can be of the same or of different materials.

The arrangement of monopolar electrodes with cells in series is electrically similar to a single cell with many electrodes and interconnections. In series cell arrangement, a higher potential difference is required for a given current to flow because the cells connected in series have higher resistance. The same current would, however, flow through all the electrodes. On the other hand, in parallel or bipolar arrangement the electric current is divided between all the electrodes in relation to the resistance of the individual cells, and each face on the electrode has a different polarity.

During electrolysis, the positive side undergoes anodic reactions, while on the negative side, cathodic reactions are encountered. Consumable metal plates, such asiron or aluminum, are usually used as sacrificial electrodes to continuously produce ions in the water. The released ions neutralize the charges of the particles and thereby initiate coagulation. The released ions remove undesirable contaminants either by chemical reaction and precipitation, or by causing the colloidal materials to coalesce, which can then be removed by flotation. In addition, as water containing colloidal particulates, oils, or other contaminants move through the applied electric field, there may be ionization, electrolysis, hydrolysis, and free-radical formation which can alter the physical and chemical properties of water and contaminants. As a result, the reactive and excited state causes contaminants to be released from the water and destroyed or made less soluble.

It is important to note that electrocoagulation technology cannot remove infinitely soluble matter. Therefore ions with molecular weights smaller than Ca+2 or Mg+2cannot be dissociated from the aqueous medium.

Reactions within the electrocoagulation reactor

Within the electrocoagulation reactor, several distinct electrochemical reactions are produced independently. These are:

  • Seeding, resulting from the anode reduction of metal ions that become new centers for larger, stable, insoluble complexes that precipitate as complex metal ions.
  • Emulsion Breaking, resulting from the oxygen and hydrogen ions that bond into the water receptor sites of oil molecules creating a water-insoluble complex separating water from oil, driller’s mud, dyes, inks, etc.
  • Halogen Complexing, as the metal ions bind themselves to chlorines in a chlorinated hydrocarbon molecule resulting in a large insoluble complex separating water from pesticidesherbicides, chlorinated PCBs, etc.
  • Bleaching by the oxygen ions produced in the reaction chamber oxidizes dyes, cyanidesbacteriaviruses, biohazards, etc. Electron flooding of the water eliminates the polar effect of the water complex, allowing colloidal materials to precipitate and the increase of electrons creates an osmotic pressure that ruptures bacteria, cysts, and viruses.
  • Oxidation Reduction reactions are forced to their natural end point within the reaction tank which speeds up the natural process of nature that occurs in wet chemistry.
  • Electrocoagulation Induced pH swings toward neutral.

Optimizing reactions

Careful selection of the reaction tank material is essential along with control of the current, flow rate and pH. Electrodes can be made of iron, aluminum, titanium,graphite or other materials, depending upon the wastewater to be treated and the contaminants to be removed. Temperature and pressure have little effect on the process.

In the EC process the water-contaminant mixture separates into a floating layer, a mineral-rich sediment, and clear water. The floating layer is removed by means of a patented overflow/removal method, and moved to a sludge collection tank. The aggregated mass settles down due to gravitational force, and is subsequently removed through a drainage valve at the bottom of the EC reaction tank, and moved to a sludge collection tank. The clear, treated water is pumped to a buffer tank for later disposal and/or reuse in the plant’s designated process.

Advantages

  • EC requires simple equipment and is easy to operate with sufficient operational latitude to handle most problems encountered on running.
  • Wastewater treated by EC gives palatable, clear, colorless and odorless water.
  • Sludge formed by EC tends to be readily settable and easy to de-water, compared to conventional alum or ferric hydroxide sludges, because the mainly metallic oxides/hydroxides have no residual charge.
  • Flocs formed by EC are similar to chemical floc, except that EC floc tends to be much larger, contains less bound water, is acid-resistant and more stable, and therefore, can be separated faster by filtration.
  • EC can produce effluent with less TDS content as compared with chemical treatments, particularly if they can be precipitated as hydroxides. If this water is reused, the lower TDS level contributes to a reduced water recovery cost.
  • The EC process has the advantage of removing the smallest colloidal particles, because the applied electric field neutralises any residual charge, thereby facilitating the coagulation.
  • The EC process generally avoids excessive use of chemicals and so there is reduced requirement to neutralize excess chemicals and less possibility of secondary pollution caused by chemical substances added at high concentration as when chemical coagulation of wastewater is used.
  • The gas bubbles produced during electrolysis can conveniently carry the pollutant components to the top of the solution where it can be more easily concentrated, collected and removed by a motorised skimmer.
  • The electrolytic processes in the EC cell are controlled electrically and with no moving parts, thus requiring less maintenance.
  • Dosing incoming waste water with sodium hypochlorite assists reduction of biochemical oxygen demand (BOD) and consequent chemical oxygen demand(COD) although this should be avoided for wastewater containing high levels of dissolved ammonia (NH4+) due to formation of trihalogenated methanes or THMs. Sodium hypochlorite can be generated using electrochlorinators.
  • Due to the excellent EC removal of suspended solids and the simplicity of the EC operation, tests conducted for the U.S. Office of Naval Research concluded that the most promising application of EC in a membrane system was found to be as pretreatment to a multi-membrane system of UF/RO ormicrofiltration/reverse osmosis (MF/RO). In this function the EC provides protection of the low-pressure membrane that is more general than that provided by chemical coagulation and more effective. EC is very effective at removing a number of membrane fouling species (such as silica, alkaline earth metal hydroxides and transition group metals) as well as removing many species that chemical coagulation alone cannot remove. (see Refractory Organics)

Source: https://en.wikipedia.org/wiki/Electrocoagulation#Water_treatment

Contact Us:

HP: 0812-2122-6727 (Ir. HARI RACHMAT)